Theano+Lasagne 实现手写数字识别

机器学习 2016-01-01

  Python在机器学习领域的地位越来越重要了,不仅因为它的简洁快速,更重要的是众多的社区和库的支持。   下面介绍几个非常不错的Python深度学习库:Theano,Pylearn2,Blocks,Keras,Lasagne   详细介绍可以参照链接中的文章。

  本文来说说用Theano+Lasagne来实现。

  Theano是一个强大的库,几乎能在任何情况下使用,从简单的logistic回归到建模并生成音乐和弦序列或是使用长短期记忆人工神经网络对电影收视率进行分类。更为重要的是它可以使用了Cython和CUDA来加速,大大提高了效率。   而Lasagne则是基于Theano构建的库,可以更便捷得实现深度学习功能,二者缺一不可。   

  下面顺便介绍一下mnist数据集。它有60000个训练样本数据集和10000个测试用例,是NIST数据库的一个子集。这些数字图像已经被规范化,将数字置于图像中心,并使图像大小一致。这对于要尝试自己的学习技术和模式识别方法在真实世界中的效果的人来说,是一个好的数据库,它节省了大量处理和格式化的时间。下载地址是链接

你需要获取以下四个文件:

1.png

当然这些是已经处理过的二进制数据集,解压也无法打开,不过可以用以下代码来显示:

# -*- coding:utf-8
import numpy as np 
import struct
import matplotlib.pyplot as plt 

filename = 'train-images.idx3-ubyte'
filename2='t10k-images.idx3-ubyte'
binfile = open(filename,'rb')#以二进制方式打开
buf = binfile.read()

index = 0
magic, numImages, numRows, numColums = struct.unpack_from('>IIII',buf,index)#读取4个32 int
print magic,' ',numImages,' ',numRows,' ',numColums
index += struct.calcsize('>IIII')

im = struct.unpack_from('>3136B',buf,index)#每张图是28*28=784Byte,这里显示6张图
index += struct.calcsize('>3136B' )

im = np.array(im)
im = im.reshape(56,56)
print im

fig = plt.figure()
plt.imshow(im,cmap = 'binary')#黑白显示
plt.show()

运行后显示:

2.png

接着继续实验: 我的用的是Python2.7,CUDA7.5及相关必要库(pip install直接安装) Theano要想调用GPU可以修改用户目录下的 ~/.theanorc.txt文件为(没有就创建一个)

[global]
floatX = float32
device = gpu0

[nvcc]
fastmath = True

顺便把我的整个文件分享出来供参考,具体要看个人配置

  [global]
openmp=False
device=gpu
floatX=float32
allow_input_downcast=True

[nvcc]
fastmath=True
flags=-LD:\Anaconda\libs
compiler_bindir=D:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\bin
base_compiledir=path_to_a_directory_without_such_characters
flags = -arch=sm_30

[blas]
ldflags=

[gcc]
cxxflags=-ID:\Anaconda\MinGW

配置好Theano之后就可以可以开始测试了,以下是lasagne提供的测试代码:mnist.py

"""
Usage example employing Lasagne for digit recognition using the MNIST dataset.

This example is deliberately structured as a long flat file, focusing on how
to use Lasagne, instead of focusing on writing maximally modular and reusable
code. It is used as the foundation for the introductory Lasagne tutorial:
http://lasagne.readthedocs.org/en/latest/user/tutorial.html

More in-depth examples and reproductions of paper results are maintained in
a separate repository: https://github.com/Lasagne/Recipes
"""

from __future__ import print_function

import sys
import os
import time

import numpy as np
import theano
import theano.tensor as T

import lasagne

# ################## Download and prepare the MNIST dataset ##################
# This is just some way of getting the MNIST dataset from an online location
# and loading it into numpy arrays. It doesn't involve Lasagne at all.

def load_dataset():
    # We first define a download function, supporting both Python 2 and 3.
    if sys.version_info[0] == 2:
        from urllib import urlretrieve
    else:
        from urllib.request import urlretrieve

    def download(filename, source='http://yann.lecun.com/exdb/mnist/'):
        print("Downloading %s" % filename)
        urlretrieve(source + filename, filename)

    # We then define functions for loading MNIST images and labels.
    # For convenience, they also download the requested files if needed.
    import gzip

    def load_mnist_images(filename):
        if not os.path.exists(filename):
            download(filename)
        # Read the inputs in Yann LeCun's binary format.
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
        # The inputs are vectors now, we reshape them to monochrome 2D images,
        # following the shape convention: (examples, channels, rows, columns)
        data = data.reshape(-1, 1, 28, 28)
        # The inputs come as bytes, we convert them to float32 in range [0,1].
        # (Actually to range [0, 255/256], for compatibility to the version
        # provided at http://deeplearning.net/data/mnist/mnist.pkl.gz.)
        return data / np.float32(256)

    def load_mnist_labels(filename):
        if not os.path.exists(filename):
            download(filename)
        # Read the labels in Yann LeCun's binary format.
        with gzip.open(filename, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=8)
        # The labels are vectors of integers now, that's exactly what we want.
        return data

    # We can now download and read the training and test set images and labels.
    X_train = load_mnist_images('train-images-idx3-ubyte.gz')
    y_train = load_mnist_labels('train-labels-idx1-ubyte.gz')
    X_test = load_mnist_images('t10k-images-idx3-ubyte.gz')
    y_test = load_mnist_labels('t10k-labels-idx1-ubyte.gz')

    # We reserve the last 10000 training examples for validation.
    X_train, X_val = X_train[:-10000], X_train[-10000:]
    y_train, y_val = y_train[:-10000], y_train[-10000:]

    # We just return all the arrays in order, as expected in main().
    # (It doesn't matter how we do this as long as we can read them again.)
    return X_train, y_train, X_val, y_val, X_test, y_test

# ##################### Build the neural network model #######################
# This script supports three types of models. For each one, we define a
# function that takes a Theano variable representing the input and returns
# the output layer of a neural network model built in Lasagne.

def build_mlp(input_var=None):
    # This creates an MLP of two hidden layers of 800 units each, followed by
    # a softmax output layer of 10 units. It applies 20% dropout to the input
    # data and 50% dropout to the hidden layers.

    # Input layer, specifying the expected input shape of the network
    # (unspecified batchsize, 1 channel, 28 rows and 28 columns) and
    # linking it to the given Theano variable `input_var`, if any:
    l_in = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                     input_var=input_var)

    # Apply 20% dropout to the input data:
    l_in_drop = lasagne.layers.DropoutLayer(l_in, p=0.2)

    # Add a fully-connected layer of 800 units, using the linear rectifier, and
    # initializing weights with Glorot's scheme (which is the default anyway):
    l_hid1 = lasagne.layers.DenseLayer(
            l_in_drop, num_units=800,
            nonlinearity=lasagne.nonlinearities.rectify,
            W=lasagne.init.GlorotUniform())

    # We'll now add dropout of 50%:
    l_hid1_drop = lasagne.layers.DropoutLayer(l_hid1, p=0.5)

    # Another 800-unit layer:
    l_hid2 = lasagne.layers.DenseLayer(
            l_hid1_drop, num_units=800,
            nonlinearity=lasagne.nonlinearities.rectify)

    # 50% dropout again:
    l_hid2_drop = lasagne.layers.DropoutLayer(l_hid2, p=0.5)

    # Finally, we'll add the fully-connected output layer, of 10 softmax units:
    l_out = lasagne.layers.DenseLayer(
            l_hid2_drop, num_units=10,
            nonlinearity=lasagne.nonlinearities.softmax)

    # Each layer is linked to its incoming layer(s), so we only need to pass
    # the output layer to give access to a network in Lasagne:
    return l_out

def build_custom_mlp(input_var=None, depth=2, width=800, drop_input=.2,
                     drop_hidden=.5):
    # By default, this creates the same network as `build_mlp`, but it can be
    # customized with respect to the number and size of hidden layers. This
    # mostly showcases how creating a network in Python code can be a lot more
    # flexible than a configuration file. Note that to make the code easier,
    # all the layers are just called `network` -- there is no need to give them
    # different names if all we return is the last one we created anyway; we
    # just used different names above for clarity.

    # Input layer and dropout (with shortcut `dropout` for `DropoutLayer`):
    network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                        input_var=input_var)
    if drop_input:
        network = lasagne.layers.dropout(network, p=drop_input)
    # Hidden layers and dropout:
    nonlin = lasagne.nonlinearities.rectify
    for _ in range(depth):
        network = lasagne.layers.DenseLayer(
                network, width, nonlinearity=nonlin)
        if drop_hidden:
            network = lasagne.layers.dropout(network, p=drop_hidden)
    # Output layer:
    softmax = lasagne.nonlinearities.softmax
    network = lasagne.layers.DenseLayer(network, 10, nonlinearity=softmax)
    return network

def build_cnn(input_var=None):
    # As a third model, we'll create a CNN of two convolution + pooling stages
    # and a fully-connected hidden layer in front of the output layer.

    # Input layer, as usual:
    network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28),
                                        input_var=input_var)
    # This time we do not apply input dropout, as it tends to work less well
    # for convolutional layers.

    # Convolutional layer with 32 kernels of size 5x5. Strided and padded
    # convolutions are supported as well; see the docstring.
    network = lasagne.layers.Conv2DLayer(
            network, num_filters=32, filter_size=(5, 5),
            nonlinearity=lasagne.nonlinearities.rectify,
            W=lasagne.init.GlorotUniform())
    # Expert note: Lasagne provides alternative convolutional layers that
    # override Theano's choice of which implementation to use; for details
    # please see http://lasagne.readthedocs.org/en/latest/user/tutorial.html.

    # Max-pooling layer of factor 2 in both dimensions:
    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    # Another convolution with 32 5x5 kernels, and another 2x2 pooling:
    network = lasagne.layers.Conv2DLayer(
            network, num_filters=32, filter_size=(5, 5),
            nonlinearity=lasagne.nonlinearities.rectify)
    network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))

    # A fully-connected layer of 256 units with 50% dropout on its inputs:
    network = lasagne.layers.DenseLayer(
            lasagne.layers.dropout(network, p=.5),
            num_units=256,
            nonlinearity=lasagne.nonlinearities.rectify)

    # And, finally, the 10-unit output layer with 50% dropout on its inputs:
    network = lasagne.layers.DenseLayer(
            lasagne.layers.dropout(network, p=.5),
            num_units=10,
            nonlinearity=lasagne.nonlinearities.softmax)

    return network

# ############################# Batch iterator ###############################
# This is just a simple helper function iterating over training data in
# mini-batches of a particular size, optionally in random order. It assumes
# data is available as numpy arrays. For big datasets, you could load numpy
# arrays as memory-mapped files (np.load(..., mmap_mode='r')), or write your
# own custom data iteration function. For small datasets, you can also copy
# them to GPU at once for slightly improved performance. This would involve
# several changes in the main program, though, and is not demonstrated here.

def iterate_minibatches(inputs, targets, batchsize, shuffle=False):
    assert len(inputs) == len(targets)
    if shuffle:
        indices = np.arange(len(inputs))
        np.random.shuffle(indices)
    for start_idx in range(0, len(inputs) - batchsize + 1, batchsize):
        if shuffle:
            excerpt = indices[start_idx:start_idx + batchsize]
        else:
            excerpt = slice(start_idx, start_idx + batchsize)
        yield inputs[excerpt], targets[excerpt]

# ############################## Main program ################################
# Everything else will be handled in our main program now. We could pull out
# more functions to better separate the code, but it wouldn't make it any
# easier to read.

def main(model='mlp', num_epochs=500):
    # Load the dataset
    print("Loading data...")
    X_train, y_train, X_val, y_val, X_test, y_test = load_dataset()

    # Prepare Theano variables for inputs and targets
    input_var = T.tensor4('inputs')
    target_var = T.ivector('targets')

    # Create neural network model (depending on first command line parameter)
    print("Building model and compiling functions...")
    if model == 'mlp':
        network = build_mlp(input_var)
    elif model.startswith('custom_mlp:'):
        depth, width, drop_in, drop_hid = model.split(':', 1)[1].split(',')
        network = build_custom_mlp(input_var, int(depth), int(width),
                                   float(drop_in), float(drop_hid))
    elif model == 'cnn':
        network = build_cnn(input_var)
    else:
        print("Unrecognized model type %r." % model)
        return

    # Create a loss expression for training, i.e., a scalar objective we want
    # to minimize (for our multi-class problem, it is the cross-entropy loss):
    prediction = lasagne.layers.get_output(network)
    loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
    loss = loss.mean()
    # We could add some weight decay as well here, see lasagne.regularization.

    # Create update expressions for training, i.e., how to modify the
    # parameters at each training step. Here, we'll use Stochastic Gradient
    # Descent (SGD) with Nesterov momentum, but Lasagne offers plenty more.
    params = lasagne.layers.get_all_params(network, trainable=True)
    updates = lasagne.updates.nesterov_momentum(
            loss, params, learning_rate=0.01, momentum=0.9)

    # Create a loss expression for validation/testing. The crucial difference
    # here is that we do a deterministic forward pass through the network,
    # disabling dropout layers.
    test_prediction = lasagne.layers.get_output(network, deterministic=True)
    test_loss = lasagne.objectives.categorical_crossentropy(test_prediction,
                                                            target_var)
    test_loss = test_loss.mean()
    # As a bonus, also create an expression for the classification accuracy:
    test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var),
                      dtype=theano.config.floatX)

    # Compile a function performing a training step on a mini-batch (by giving
    # the updates dictionary) and returning the corresponding training loss:
    train_fn = theano.function([input_var, target_var], loss, updates=updates)

    # Compile a second function computing the validation loss and accuracy:
    val_fn = theano.function([input_var, target_var], [test_loss, test_acc])

    # Finally, launch the training loop.
    print("Starting training...")
    # We iterate over epochs:
    for epoch in range(num_epochs):
        # In each epoch, we do a full pass over the training data:
        train_err = 0
        train_batches = 0
        start_time = time.time()
        for batch in iterate_minibatches(X_train, y_train, 500, shuffle=True):
            inputs, targets = batch
            train_err += train_fn(inputs, targets)
            train_batches += 1

        # And a full pass over the validation data:
        val_err = 0
        val_acc = 0
        val_batches = 0
        for batch in iterate_minibatches(X_val, y_val, 500, shuffle=False):
            inputs, targets = batch
            err, acc = val_fn(inputs, targets)
            val_err += err
            val_acc += acc
            val_batches += 1

        # Then we print the results for this epoch:
        print("Epoch {} of {} took {:.3f}s".format(
            epoch + 1, num_epochs, time.time() - start_time))
        print("  training loss:\t\t{:.6f}".format(train_err / train_batches))
        print("  validation loss:\t\t{:.6f}".format(val_err / val_batches))
        print("  validation accuracy:\t\t{:.2f} %".format(
            val_acc / val_batches * 100))

    # After training, we compute and print the test error:
    test_err = 0
    test_acc = 0
    test_batches = 0
    for batch in iterate_minibatches(X_test, y_test, 500, shuffle=False):
        inputs, targets = batch
        err, acc = val_fn(inputs, targets)
        test_err += err
        test_acc += acc
        test_batches += 1
    print("Final results:")
    print("  test loss:\t\t\t{:.6f}".format(test_err / test_batches))
    print("  test accuracy:\t\t{:.2f} %".format(
        test_acc / test_batches * 100))

    # Optionally, you could now dump the network weights to a file like this:
    # np.savez('model.npz', *lasagne.layers.get_all_param_values(network))
    #
    # And load them again later on like this:
    # with np.load('model.npz') as f:
    #     param_values = [f['arr_%d' % i] for i in range(len(f.files))]
    # lasagne.layers.set_all_param_values(network, param_values)

if __name__ == '__main__':
    if ('--help' in sys.argv) or ('-h' in sys.argv):
        print("Trains a neural network on MNIST using Lasagne.")
        print("Usage: %s [MODEL [EPOCHS]]" % sys.argv[0])
        print()
        print("MODEL: 'mlp' for a simple Multi-Layer Perceptron (MLP),")
        print("       'custom_mlp:DEPTH,WIDTH,DROP_IN,DROP_HID' for an MLP")
        print("       with DEPTH hidden layers of WIDTH units, DROP_IN")
        print("       input dropout and DROP_HID hidden dropout,")
        print("       'cnn' for a simple Convolutional Neural Network (CNN).")
        print("EPOCHS: number of training epochs to perform (default: 500)")
    else:
        kwargs = {}
        if len(sys.argv) > 1:
            kwargs['model'] = sys.argv[1]
        if len(sys.argv) > 2:
            kwargs['num_epochs'] = int(sys.argv[2])
        main(**kwargs)

如果一切正常输出结果将是:

Epoch 1 of 500
  training loss:            1.352731
  validation loss:          0.466565
  validation accuracy:              87.70 %
Epoch 2 of 500
  training loss:            0.591704
  validation loss:          0.326680
  validation accuracy:              90.64 %
Epoch 3 of 500
  training loss:            0.464022
  validation loss:          0.275699
  validation accuracy:              91.98 %
...

程序将持续运行,一段时间后准确率可达到98%,时间长短取决于是否使用GPU。


本文由 Tony 创作,采用 知识共享署名 3.0,可自由转载、引用,但需署名作者且注明文章出处。

如果对您有用,您的支持将鼓励我继续创作!